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Challenges in Proteomic Data Mining
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Scientific questions mentioned
in this talk

e HIV associated neurodegenerative disorders
(HAND)

e HIV associated malignancy (HAM)

 Infection and cancer
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HIV Associated Neurodegeneration

40-70% HIV infected patients show HIV associated neurodegenerative
disorders (HAND).

AIDS dementia complex (ADC) is also known as HIV dementia, HIV
encephalopathy, HIV-associated dementia (HAD).

Prevalence is between 10-24% in Western countries.
It is sometimes seen as the first sign of the onset of AIDS.

Central nervous system is a reservoir of HIV-1 infection



(Ho et al, 2010, CROI)

White matter lesions
were the predominant
abnormality detected in
primary HIV infection
(PHI) as early as 90
days post infection.



Question to be answered:

How do HIV virions enter CNS and cause neuronal
damage?



Immune Activation and neuroAIDS
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Macrophage/microglia

Brain
1. Astrocytes contain HIV-1 associated neurotoxicity
(Wang et al, 2008a).

2. Astrocytes inhibit HIV-1 maturation in microglia (Wang et
al, 2008Db).
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Figure 2. Proteome of
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Determining Significance of Your
Data to IPA Annotations
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How the Fisher’s Exact Test is
Calculated

e The null hypothesis: The overlap (association) between the
dataset and the function/pathway is due to chance. In other
words, they are independent of each other.

e |f the proportions mapping to a function or pathway are similar
between the sample and the reference, there is not likely to be
a biological effect

(Adapted from IPA training material with permission)



Significance Calculations

Functions and Diseases
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Cell death

Figure 3. Ingenuity Pathway Analysis.

b (Wang et al, 2008a)
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Macrophage/microglia

Brain
1.

T 2

3. HIV-1 infected microglia show migratory phenotypes
(Wang et al, 2008a).
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What if astrocytes become bad guys?

1 Caldesmon 2 GFAP

»

(Wang et al, 2008b)



Cell death, DNA replication, recombination and repair
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Hori, K., Burd, P.R., Kutza, J., Weih, K.A., and Clouse, K.A. Human astrocytes inhibit HIV-1 expression in monocyte-
derived macrophages by secreted factors, AIDS 13, 751-8 (1999). PMID: 10357373

Leone, C., Le Pavec, G., Meme, W., Porcheray, F., Samah, B., Dormont, D., and Gras, G. Characterization of human
monocyte-derived microglia-like cells, Glia 54, 183-92 (2006). PMID: 16807899



Macrophage/microglia

Brain
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4. Most HIV-1 found in brain are M-tropic (Gonzalez-Perez
et al, 2010).
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Paper # 425

Compartmentalization of HIV-1 Macrophage-tropism in Brain Tissue of Patients with HIV-associated Dementia

Maria Paz Gonzalez-Perez* and P Clapham

Univ of Massachusetts Med Sch, Worcester, US

Background: Several groups have reported the presence of highly mac-tropic RS envelopes in brain tissue of AIDS patients with neurological complications. However, these studies have investigated very few
subjects and have differed in the extent of compartmentalization of macrophage-tropism between the brain and immune tissue. Here, we have investigated compartmentalization of genotypes in 225 subjects and
67 mac-tropism of envelopes amplified from brain and spleen or lymph node (LN) of 5 HAD subjects.

Methods: Envelopes were amplified from proviral and episomal DNA from single genomes present in brain and spleen or LN tissue using high fidelity DNA polymerases. Envs were cloned into the pcDNA
3.1D/V5-His-TOPO and sequenced. Env+ pseudovirions were prepared by cotransfection of env vectors with env” pNL4.3 into 293T cells and titrated on HeLa TZM-BL (CD4* CCR5* CXCR4"), HIJ (CD4"
CCR5™ CXCR4") and on macrophages. Nucleotide sequences were aligned using Clustal X and phylogenetic analyses undertaken with MEGA v4.

Results: All envs amplified from brain tissue were RS. We observed compartmentalization of sequence and mac-tropism for 4 of 5 subjects, although for one subject only 3 envs were obtained from brain. For
one subject, compartmentalization of genotypes was not apparent although the majority of brain envs were mac-tropic, while the majority of envs from spleen/LN were not. Envs from episomal DNA did not
segregate separately from those derived from proviral DNA. Examples of closely related envs that differed markedly in mac-tropism were identified in LN and brain. No association between gp120 charge,
length or number of N-linked CHO sites was observed. For one subject, envs from brain carried N283 (previously associated with mac-tropism and dementia). However, for two subjects nearly all envs from
spleen/LN and brain carried N283.

Conclusions: The extent of compartmentalization of HIV-1 env genotypes and mac-tropism in the brain varied depending on subject. However, even when sequence compartmentalization was not apparent,
mac-tropism segregated more clearly with a brain origin. This observation together with the identification of closely related envs that differed markedly in mac-tropism in spleen, LN and brain, strongly indicate
that distinct selective pressures at these sites can modulate mac-tropism.
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Astrocytes contain HIV-1
associated neurotoxicity
(Wang et al, 2008a).
Astrocytes inhibit HIV-1
maturation in microglia
(Wang et al, 2008b).
HIV-1 infected microglia
show migratory
phenotypes (Wang et al,
2008a).

Most HIV-1 found in brain
are M-tropic (Gonzalez-
Perez et al, 2010).



Blood

1. Monocytes can harbor HIV-1.
2. In all cases we studied, HIV-1 show
compartmentalization between monocytes and CD4+ T
cells (Zhu et al, 2002; Llewellyn et al, 2006; Fulcher et
al, 2004).
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Blood

3. Level of HIV DNA in monocytes are linked with HAND/
dementia (Valcour et al, 2010).
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Macrophage/microglia

1. Astrocytes contain HIV-1
associated neurotoxicity
(Wang et al, 2008a).

2. Astrocytes inhibit HIV-1
maturation in microglia
(Wang et al, 2008b).

3. HIV-1 infected microglia
show migratory
phenotypes (Wang et al,
2008a).

4. Most HIV-1 found in brain
are M-tropic (Gonzalez-
Perez et al, 2010).

Monocytes can harbor HIV-1 .

In some cases, HIV-1 show
compartmentalization between monocytes
and CD4+ T cells (Fulcher et al, 2004;
Llewellyn et al, 2006).

Level of HIV DNA in monocytes are linked
with HAND/dementia (Valcour et al, 2010).



Bone marrow

1. HIV-1 infects multipotent progenitor cells causing cell
@ —\‘ death and establishing latent cellular reservoirs (Carter

et al, 2010).
L@

-

Nat Med. 2010 Mar 7. [Epub ahead of print)

[1] Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA. [2] Medical Scientist Training Program, University of Michigan, Ann Arbor,
Michigan, USA. [3] These authors contributed equally to this work.

HIV causes a chronic infection characterized by depletion of CD4(+) T lymphocytes and the development of opportunistic infections. Despite drugs that inhibit viral spread,
HIV infection has been difficult to cure because of uncharacterized reservoirs of infected cells that are resistant to highly active antiretroviral therapy (HAART) and the
immune response. Here we used CD34(+) cells from infected people as well as in vitro studies of wild-type HIV to show infection and killing of CD34(+) multipotent
hematopoietic progenitor cells (HPCs). In some HPCs, we detected latent infection that stably persisted in cell culture until viral gene expression was activated by
differentiation factors. A unique reporter HIV that directly detects latently infected cells in vitro confirmed the presence of distinct populations of active and latently infected
HPCs. These findings have major implications for understanding HIV bone marrow pathology and the mechanisms by which HIV causes persistent infection.

PMID: 20208541 [PubMed - as supplied by publisher]



Bone marrow
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< 2. Reconstitution of bone marrow with CCR5-disrupted
HSC can control HIV-1 in vivo (Hutter et al, 2009).
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Macrophage/microglia

Astrocytes contain HIV-1
associated neurotoxicity
(Wang et al, 2008a).
Astrocytes inhibit HIV-1
maturation in microglia
(Wang et al, 2008b).
HIV-1 infected microglia
show migratory
phenotypes (Wang et al,
2008a).

Most HIV-1 found in brain
are M-tropic (Gonzalez-
Perez et al, 2010).
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HIV associated inflammation and
Cancer microenvironment



Hypothesis

Unintegrated HIV DNA in macrophages can
release inflammatory viral and host cell
products, thus co-activating bystander
normal tissue cells. This inter-cellular
crosstalk generates a microenvironment
that is relevant to cancer progression.




A novel cue of cancer microenvironment - Unintegrated
HIV DNA in macrophages

1. Unintergrated HIV DNA persists in macrophages (Kim et al.,
1989; Muesing et al., 1985; Pang et al., 1990; Pauza, Galindo,
and Richman, 1990)

2. Transcription of these unintergrated HIV DNA in macrophages is
long-term active (Kelly et al, 2008).

HIV associated malignancy Can HAART reduce the incidence?
Kaposi’s sarcoma Significantly
Cervical cancer Non-significantly

Non-Hodgkin's lymphoma (Colon Non-significantly
cancer)
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Several players in the game

. HIV Viral protein R
. HIV gp120
. Bone marrow/monocyte derived macrophages

. Cancer cells (such as sarcoma, cervical cancer, CNS
cancer, NHL and others)

. Other cancer-educated cells



1216

Viral Protein R

Apoptosis (2009) 14:1212-1226

Fig. 1 Functional Vpr
expressed endogenously in
C8166 cells. a GFP expression
in mock-, rAd-vector and rAd-
vpr infected groups. Cells with
either mock or viral infections
were cultured for 24 h. GFP was
detected at FL1 channel in
flowcytometry and data shown
are representative of three
independent experiments. M/
region shows GFP positive
cells. b Representative images
of GFP expression in different
groups (scale bar = 10 pm),
followed by westem blotting
confirmation of HIV-1 Vpr in
C8166 cells. ¢ Cell cycle and
cell death of C8166 cells. Cells
were stained with propidium
iodide and analyzed for DNA
content to determine cell
populations at 48 and 72 h after
mock, rAd-vector and rAd-vpr
infection. In the order of
increasing DNA content, dead
cells are shown in the sub-
diploid peaks, G1 phase
populations in diploid peaks, S
phase cells in the plateau area
and G,/ cells in the

polyploidy peaks
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Fig. 2 Mitochondrial membrane potential loss was induced by
endogenous Vpr expression in C8166 cells. Cells with mock- and
viral infections as well as CPT (0.5 pmol/l) treatment were cultured
for 24 h prior to JC-1 staining. a JC-1 aggregate and monomer
observation. Images shown are representative observations from three
independent experiments. Red images indicate the JC-1 aggregate
fluorescence from healthy mitochondria, while green images exhibit

cytosolic JC-1 monomers. Merged images indicated the co-localiza-
tion of JC-1 aggregates and monomers. Scale bar = 10 pm. b MFI
quantification of JC-1 aggregate in mock-, rAd-vector and rAd-vpr
infected groups. ¢ MFI quantification of JC-1 monomer in different
groups. d MMP loss assay by FACS. Data are shown as mean +
SEM. One-way-ANOVA analysis, n = 3. ** P < (.01

(He et al, 2009)
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Fig. 5 Endogenously expressed Vpr induces up-regulation of caspase
3&7 activity in C8166 cells. Mock-, rAd-vector and rAd-vpr infected
as well as CPT (0.5 umol/l) treated cells were cultured for 24 h before
being labeled by red FLICA. Images in the upper row show the active

CPT

caspase 3&7 in the C8166 cells of different groups, while those in the
lower row indicate the merged images of GFP, active caspases 3&7

and white field. Scale bar = 20 pm

(He et al, 2009)
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